Preliminary assessment of dispersion versus absorption analysis of high spectral and spatial resolution magnetic resonance images in the diagnosis of breast cancer.

نویسندگان

  • William A Weiss
  • Milica Medved
  • Gregory S Karczmar
  • Maryellen L Giger
چکیده

Water resonance lineshapes observed in breast lesions imaged with high spectral and spatial resolution (HiSS) magnetic resonance imaging have been shown to contain diagnostically useful non-Lorentzian components. The purpose of this work is to update a previous method of breast lesion diagnosis by including phase-corrected absorption and dispersion spectra. This update includes information about the shape of the complex water resonance, which could improve the performance of a computer-aided diagnosis breast lesion classification scheme. The non-Lorentzian characteristics observed in complex breast lesion water resonance spectra are characterized by comparing a plot of the real versus imaginary components of the spectrum to that of a perfect complex Lorentzian spectrum, a "dispersion versus absorption" (DISPA) analysis technique. Distortion in the shape of the observed spectra indicates underlying physiologic changes, which have been shown to be correlated with malignancy. These spectral shape distortions in each lesion voxel are quantified by summing the deviations in DISPA radius from an ideal complex Lorentzian spectrum over all Fourier components, yielding a "total radial difference" (TRD). We limited our analysis to those voxels in each lesion with the largest TRD. The number of voxels considered was dependent on the lesion size. The TRD was used to classify voxels from 15 malignant and 8 benign lesions ([Formula: see text] voxels after voxel elimination). Lesion discrimination performance was evaluated for both the average and variance of the TRD within each lesion. Area under the receiver operating characteristic curve (ROC AUC) was used to assess both the voxel- and lesion-based discrimination methods in the task of distinguishing between malignant and benign. In the task of distinguishing voxels from malignant and benign lesions, TRD yielded an AUC of 0.89 (95% confidence interval [0.84, 0.91]). In the task of distinguishing malignant from benign lesions, the average radial difference yielded an AUC of 0.90 (95% confidence interval [0.71, 1.00]) and the variance in the radial difference yielded an AUC of 0.84 (95% confidence interval [0.61, 0.99]). We have applied the DISPA spectroscopic analysis method to HiSS data in order to identify and quantify voxels in breast lesions displaying non-Lorentzian characteristics. We have shown that a breast lesion classification scheme based on the absorption and dispersion spectral data obtained from HiSS acquisitions may outperform a similar classifier based on single off-peak component analysis, as it uses shape details of the entire spectrum instead of the magnitude at a single spectral location.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Level Strategy for Spectral Quality Assessment of High Resolution Pan-sharpen Images

Panchromatic and multi-spectral images produced by the remote sensing satellites are fused together to provide a multi-spectral image with a high spatial resolution at the same time. The spectral quality of the fused images is very important because the quality of a large number of remote sensing products depends on it. Due to the importance of the spectral quality of the fused images, its eval...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images

Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...

متن کامل

استفاده از تبدیل PCA مکانی جهت ادغام تصاویر چند طیفی و تک رنگ

Obtaining of an image with high spectral and spatial resolution is the goal of image fusion. The PCA is a well-known pan-sharpening approach widely used for its efficiency and high spatial resolution. However, it can distort the spectral characteristics of the multispectral images. To avoid the weak points of the standard PCA technique, Spatial PCA transform has been proposed and the reasons of...

متن کامل

Breast cancer risk assessment in Iranian women by Gail model

  Abstract   Background: Due to the high incidence of breast cancer and the effect of its early   diagnosis on decreasing morbidity and mortality, we used the Gail model to study   breast cancer risk in Iranian women.   Methods: This study was done in a simple randomized way. Participants were 2000   Iranian women older than 35 years old. The questionnaire consisted of demographic   data such a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical imaging

دوره 2 2  شماره 

صفحات  -

تاریخ انتشار 2015